The Async workflow uses the threadpool which is a system-managed queue of work items and a set of threads on which to run them. When you use ReadAsync, after starting the asynchronous I/O operation the current work item terminates allowing the threadpool thread it was runnning on to start another work item from the queue. When the asynchronous I/O operation is completed a new work item is scheduled to continue the workflow that requested the operation. In this way there can be more images concurrently being processed than there are threads in the threadpool.
The Async workflow uses the threadpool which is a system-managed queue of work items and a set of threads on which to run them. When you use ReadAsync, after starting the asynchronous I/O operation the current work item terminates allowing the threadpool thread it was runnning on to start another work item from the queue. When the asynchronous I/O operation is completed a new work item is scheduled to continue the workflow that requested the operation. In this way there can be more images concurrently being processed than there are threads in the threadpool.
I see, that's sort of what I was getting at with "more granular": the tasks defined using ReadAsync can be split more effectively by the system.
However, while I see that indeed, more images can be "being processed" at the same time, I'm not sure I get how that would increase the throuphput, or imrpove the overall processing time. If there are 100 threads available, and there are say, 1000 images to process, it doesn't really matter whether you read-process-write the images in 10 batches of 100 images (the synchronous case) or if you read a 100, read another 100, process 50, write 50, read another 100, and so on. If anything, I would expect it to go slower because there are more context-switches.
Anyway, I'll see if I can try some experiments somewhere next week. Right now, I'm on my old single core, single CPU, 5 year old laptop where _everything_ is slow ;)
This is all very subtle in any case. I think a much more convincing argument could be made with an example using asynchrony for keeping the UI reactive. Anyone who has done UI's using Winforms or WPF knows the pain involved in that, and it sure seem like Asyn workflows are able to clean up much of that mess.
Kurt
Brian's example is illuminating of the difference. Essentially in the Async model pending I/O operations don't block any thread, therefore the computation can always progress. This can be subtle to appreciate when the Async computation runs on the threadpool because the threadpool is already a large collection of threads so it dilutes the new form of concurrency the Async computation is inroducing. In theory the Async computation only requires one thread to execute on, whereby all I/O operations are multiplexed on this one thread. You might want to take a look at my blog post that describes building an async computation engine that runs on a single thread instead of the threadpool.
Re Async workflows and UI programming. I've never tried this myself but I would guess you would:
1. Write your event handler as an Async<unit> computation.
2. Run this computation in the event handler.
1
btn.Click.Add(fun _ -> Async.Run (* ... *))
3. Use the SwitchTo
operations to move between background and UI. E.g.,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
type Async = let SwitchToWinForms () = Async.SwitchTo (new WindowsFormsSynchronizationContext()) async { // execution starts in UI thread // update some UI btn.Enabled <- false // go to background thread Async.SwitchToThreadPool () // do lots of work Process1000Images () // go back to UI thread Async.SwitchToWinForms () btn.Enabled <- true }
Thank you both for the illuminating discussion. I can't say I really pieced together all the parts of the puzzle yet, but I see light at the end of the tunnel ;)
Thanks for the blog post heads up. I remember reading the paper that it is based on a long time ago, I never made the connection with Async workflows however.
Finally, on UI programming, I was thinking more along the lines of (haven't tested this at all!):
1 2 3 4 5 6 7 8 9 10
async { //execution on UI thread btn.Enabled <- false //do some work in background thread let! result = model.DoLongCalculationAsync(btn.Input) //do something with result in UI thread }
Where somewhere in the model.DoLongCalculationAsync I'd probably have to use SpawnThenPostBack to put the result back on the UI thread. Maybe a new async variant would be useful to do this automatically, i.e. run async calls on the threadpool and return in the syncrhonization context of the caller.
Don't know if I'm making sense here.
thanks!
Kurt
Yes, SpawnThenPostBack is another good idea. The library documentation hints at using that function for this purpose.
What happens if there are only 100 threads available, your network/disk connection is slow, and all 100 threads get blocked waiting on I/O? Now your CPU is idle while you wait for data to trickle from the disk/network. With ReadAsync(), on the other hand, even if the I/O itself is slow, there are always free threads available to process the 'real work' with the CPU.
You're right that there are two aspects here. There's "using Async so that you can run operations in parallel", and there's "using Async so that you don't block a thread while waiting on IO". If you are doing tons of reads in parallel and the Read()s are not ReadAsync()s, then I think either (1) the threadpool will throttle the number of threads it creates and you'll end up having e.g. the 100th Read() operation block because there there are no more threads available in the thread pool (they're all block on Read()s), or (2) the threadpool allocates tons and tons of threads, which will keep the parallelism going but impact performance because threads consume memory and take cycles to create and destroy.
So the ThreadPool is a resource, and ReadAsync() (as opposed to Read()) will remove some needless pressure against that resource.
That's my high-level understanding, anyway; it might be interesting to measure trying to read 10000 things using both strategies.
Topic tags
- f# × 3705
- websharper × 1897
- compiler × 286
- functional × 201
- ui next × 139
- c# × 121
- classes × 97
- web × 97
- .net × 84
- book × 84
- async × 76
- ui.next × 67
- bug × 54
- core × 49
- website × 49
- server × 45
- parallel × 43
- ui × 43
- enhancement × 41
- parsing × 41
- testing × 41
- trywebsharper × 41
- typescript × 37
- html × 35
- javascript × 35
- owin × 35
- asynchronous × 30
- monad × 28
- ocaml × 28
- tutorial × 27
- warp × 27
- haskell × 26
- sitelet × 25
- linq × 22
- workflows × 22
- wpf × 20
- fpish × 19
- introduction × 19
- silverlight × 19
- sitelets × 19
- monodevelop × 17
- rpc × 17
- suave × 17
- piglets × 16
- collections × 15
- feature request × 15
- jquery × 15
- templates × 15
- getting started × 14
- pipeline × 14
- kendoui × 13
- reactive × 12
- 4.1.0.171 × 11
- monads × 11
- opinion × 10
- 4.0.190.100-rc × 9
- deployment × 9
- fixed × 9
- formlets × 9
- in × 9
- json × 9
- plugin × 9
- proposal × 9
- scheme × 9
- solid × 9
- basics × 8
- concurrent × 8
- highcharts × 8
- how-to × 8
- python × 8
- 4.1.1.175 × 7
- complexity × 7
- documentation × 7
- visual studio × 7
- 4.1.2.178 × 6
- lisp × 6
- real-world × 6
- released in 4.0.192.103-rc × 6
- remoting × 6
- resources × 6
- scala × 6
- websharper ui.next × 6
- workshop × 6
- xaml × 6
- 4.0.193.110 × 5
- 4.2.3.236 × 5
- aspnetmvc × 5
- authentication × 5
- azure × 5
- bootstrap × 5
- conference × 5
- dsl × 5
- formlet × 5
- java × 5
- list × 5
- metaprogramming × 5
- ml × 5
- released in Zafir.4.0.188.91-beta10 × 5
- sql × 5
- visualstudio × 5
- websharper.forms × 5
- zafir × 5
- 4.0.192.106 × 4
- 4.0.195.127 × 4
- 4.1.0.38 × 4
- 4.2.1.86 × 4
- 4.2.6.118 × 4
- css × 4
- example × 4
- extensions × 4
- fsi × 4
- fsx × 4
- html5 × 4
- jqueryui × 4
- lift × 4
- reflection × 4
- remote × 4
- rest × 4
- spa × 4
- teaching × 4
- template × 4
- websocket × 4
- wontfix × 4
- 4.0.196.147 × 3
- 4.1.0.34 × 3
- 4.1.6.207 × 3
- 4.2.1.223-beta × 3
- 4.2.11.258 × 3
- 4.2.4.114 × 3
- 4.2.4.247 × 3
- 4.2.5.115 × 3
- 4.2.6.253 × 3
- 4.2.9.256 × 3
- ajax × 3
- alt.net × 3
- aml × 3
- asp.net mvc × 3
- canvas × 3
- cloudsharper × 3
- compilation × 3
- database × 3
- erlang × 3
- events × 3
- extension × 3
- file upload × 3
- forums × 3
- inline × 3
- issue × 3
- kendo × 3
- macro × 3
- mono × 3
- msbuild × 3
- mvc × 3
- pattern × 3
- piglet × 3
- released in Zafir.4.0.187.90-beta10 × 3
- svg × 3
- type provider × 3
- view × 3
- 4.1.1.64 × 2
- 4.1.5.203 × 2
- 4.1.7.232 × 2
- 4.2.10.257 × 2
- 4.2.3.111 × 2
- 4.2.5.249 × 2
- android × 2
- asp.net × 2
- beginner × 2
- blog × 2
- chart × 2
- client × 2
- client server app × 2
- clojure × 2
- computation expressions × 2
- constructor × 2
- corporate × 2
- courses × 2
- cufp × 2
- d3 × 2
- debugging × 2
- direct × 2
- discriminated union × 2
- docs × 2
- elm × 2
- endpoint × 2
- endpoints × 2
- enterprise × 2
- entity framework × 2
- event × 2
- f# interactive × 2
- fable × 2
- flowlet × 2
- formdata × 2
- forms × 2
- fsc × 2
- google maps × 2
- hosting × 2
- http × 2
- https × 2
- iis 8.0 × 2
- install × 2
- interactive × 2
- interface × 2
- iphone × 2
- iteratee × 2
- jobs × 2
- jquery mobile × 2
- keynote × 2
- lens × 2
- lenses × 2
- linux × 2
- listmodel × 2
- mac × 2
- numeric × 2
- oauth × 2
- obfuscation × 2
- offline × 2
- oop × 2
- osx × 2
- packaging × 2
- pattern matching × 2
- performance × 2
- pipelines × 2
- q&a × 2
- quotation × 2
- reference × 2
- released in Zafir.4.0.185.88-beta10 × 2
- rx × 2
- script × 2
- security × 2
- self host × 2
- seq × 2
- sockets × 2
- stm × 2
- tcp × 2
- trie × 2
- tutorials × 2
- type × 2
- url × 2
- var × 2
- websharper.charting × 2
- websharper4 × 2
- websockets × 2
- wig × 2
- xna × 2
- zh × 2
- .net interop × 1
- 2012 × 1
- 4.0.194.126 × 1
- 4.1.3.184 × 1
- 4.1.4.189 × 1
- 4.2.0.214-beta × 1
- 4.2.12.259 × 1
- 4.2.2.231-beta × 1
- 4.2.8.255 × 1
- Canvas Sample Example × 1
- DynamicStyle Animated Style × 1
- Fixed in 4.0.190.100-rc × 1
- Released in Zafir.UI.Next.4.0.169.79-beta10 × 1
- SvgDynamicAttribute × 1
- WebComponent × 1
- abstract class × 1
- accumulator × 1
- active pattern × 1
- actor × 1
- addin × 1
- agents × 1
- aggregation × 1
- agile × 1
- alter session × 1
- animation × 1
- anonymous object × 1
- apache × 1
- api × 1
- appcelerator × 1
- architecture × 1
- array × 1
- arrays × 1
- asp.net 4.5 × 1
- asp.net core × 1
- asp.net integration × 1
- asp.net mvc 4 × 1
- asp.net web api × 1
- aspnet × 1
- ast × 1
- attributes × 1
- authorization × 1
- b-tree × 1
- back button × 1
- badimageformatexception × 1
- bash script × 1
- batching × 1
- binding-vars × 1
- bistro × 1
- body × 1
- bundle × 1
- camtasia studio × 1
- cas protocol × 1
- charts × 1
- clarity × 1
- class × 1
- cli × 1
- clipboard × 1
- clojurescript × 1
- closures × 1
- cloud × 1
- cms × 1
- coding diacritics × 1
- color highlighting × 1
- color zones × 1
- combinator × 1
- combinators × 1
- compile × 1
- compile code on server × 1
- config × 1
- confirm × 1
- content × 1
- context × 1
- context.usersession × 1
- continuation-passing style × 1
- coords × 1
- cordova × 1
- cors × 1
- coursera × 1
- cross-domain × 1
- csla × 1
- current_schema × 1
- custom content × 1
- data × 1
- data grid × 1
- datetime × 1
- debug × 1
- declarative × 1
- delete × 1
- devexpress × 1
- dhtmlx × 1
- dictionary × 1
- directattribute × 1
- disqus × 1
- distance × 1
- do binding × 1
- doc elt ui.next upgrade × 1
- docker × 1
- dojo × 1
- dol × 1
- dom × 1
- domain × 1
- du × 1
- duf-101 × 1
- dynamic × 1
- eastern language × 1
- eclipse × 1
- edsl × 1
- em algorithm × 1
- emacs × 1
- emotion × 1
- enums × 1
- error × 1
- etw × 1
- euclidean × 1
- eventhandlerlist × 1
- examples × 1
- ext js × 1
- extension methods × 1
- extra × 1
- facet pattern × 1
- failed to translate × 1
- fake × 1
- fantomas × 1
- fear × 1
- float × 1
- form × 1
- form-data × 1
- forum × 1
- fp × 1
- frank × 1
- fsdoc × 1
- fsharp × 1
- fsharp.core × 1
- fsharp.powerpack × 1
- fsharpx × 1
- fsunit × 1
- function × 1
- functional style × 1
- game × 1
- games × 1
- gc × 1
- generic × 1
- geometry × 1
- getlastwin32error × 1
- getting-started × 1
- google × 1
- google.maps × 1
- grid × 1
- group × 1
- guide × 1
- hash × 1
- headers × 1
- hello world example × 1
- heroku × 1
- highchart × 1
- history × 1
- how to × 1
- html-templating × 1
- http405 × 1
- httpcontext × 1
- hubfs × 1
- i18n × 1
- ie 8 × 1
- if-doc × 1
- iis × 1
- image × 1
- images × 1
- inheritance × 1
- initialize × 1
- input × 1
- install "visual studio" × 1
- installer × 1
- int64 × 1
- interfaces × 1
- internet explorer × 1
- interop × 1
- interpreter × 1
- io × 1
- iobservable × 1
- ios × 1
- iot × 1
- ipad × 1
- isomorphic × 1
- javascript optimization × 1
- javascript semanticui resources × 1
- jquery-plugin × 1
- jquery-ui × 1
- jquery-ui-datepicker × 1
- js × 1
- kendo datasource × 1
- kendochart × 1
- kendoui compiler × 1
- knockout × 1
- l10n × 1
- learning × 1
- library × 1
- libs × 1
- license × 1
- licensing × 1
- lineserieszonescfg × 1
- local setting × 1
- localization × 1
- logging × 1
- loop × 1
- macros × 1
- mailboxprocessor × 1
- mapping × 1
- maps × 1
- markerclusterer × 1
- markup × 1
- marshal × 1
- math × 1
- mathjax × 1
- message × 1
- message passing × 1
- message-passing × 1
- meta × 1
- metro style × 1
- micro orm × 1
- minimum-requirements × 1
- mix × 1
- mobile installation × 1
- mod_mono × 1
- modal × 1
- module × 1
- mouseevent × 1
- mouseposition × 1
- multidimensional × 1
- multiline × 1
- multithreading × 1
- mysql × 1
- mysqlclient × 1
- nancy × 1
- native × 1
- nested × 1
- nested loops × 1
- node × 1
- nunit × 1
- object relation mapper × 1
- object-oriented × 1
- om × 1
- onboarding × 1
- onclick × 1
- optimization × 1
- option × 1
- orm × 1
- os x × 1
- output-path × 1
- override × 1
- paper × 1
- parameter × 1
- persistence × 1
- persistent data structure × 1
- phonegap × 1
- pola × 1
- post × 1
- powerpack × 1
- prefix tree × 1
- principle of least authority × 1
- privacy × 1
- private × 1
- profile × 1
- programming × 1
- project × 1
- project euler × 1
- projekt_feladat × 1
- protected × 1
- provider × 1
- proxy × 1
- ptvs × 1
- public × 1
- pure f# × 1
- purescript × 1
- qna × 1
- quant × 1
- query sitelet × 1
- question × 1
- quotations × 1
- range × 1
- raphael × 1
- razor × 1
- rc × 1
- reactjs × 1
- real-time × 1
- ref × 1
- region × 1
- released in 4.0.190.100-rc × 1
- reporting × 1
- responsive design × 1
- rest api × 1
- rest sitelet × 1
- restful × 1
- round table × 1
- router × 1
- routing × 1
- rpc reverseproxy × 1
- runtime × 1
- sales × 1
- sample × 1
- sampleapp × 1
- scriptcs × 1
- scripting × 1
- search × 1
- self hosted × 1
- semanticui × 1
- sequence × 1
- serialisation × 1
- service × 1
- session-state × 1
- sharepoint × 1
- signals × 1
- sitelet website × 1
- sitelet.protect × 1
- sitlets × 1
- slickgrid × 1
- source code × 1
- sqlentityconnection × 1
- ssl × 1
- standards × 1
- static content × 1
- stickynotes × 1
- streamreader × 1
- stress × 1
- strong name × 1
- structures × 1
- submitbutton × 1
- subscribe × 1
- svg example html5 websharper.ui.next × 1
- sweetalert × 1
- system.datetime × 1
- system.reflection.targetinvocationexception × 1
- table storage × 1
- targets × 1
- tdd × 1
- templates ui.next × 1
- templating × 1
- text parsing × 1
- three.js × 1
- time travel × 1
- tls × 1
- tooltip × 1
- tracing × 1
- tsunamiide × 1
- turkish × 1
- twitter-bootstrap × 1
- type erasure × 1
- type inference × 1
- type providers × 1
- type-providers × 1
- typeprovider × 1
- ui next forms × 1
- ui-next × 1
- ui.next jqueryui × 1
- ui.next charting × 1
- ui.next formlets × 1
- ui.next forms × 1
- ui.next suave visualstudio × 1
- ui.next templating × 1
- unicode × 1
- unittest client × 1
- upload × 1
- usersession × 1
- validation × 1
- vb × 1
- vb.net × 1
- vector × 1
- view.map × 1
- visal studio × 1
- visual f# × 1
- visual studio 11 × 1
- visual studio 2012 × 1
- visual studio shell × 1
- vs2017 compiler zafir × 1
- vsix × 1
- web api × 1
- web-scraping × 1
- webapi × 1
- webcomponents × 1
- webforms × 1
- webgl × 1
- webrtc × 1
- webshaper × 1
- websharper async × 1
- websharper codemirror × 1
- websharper f# google × 1
- websharper forms × 1
- websharper reactive × 1
- websharper rpc × 1
- websharper sitelets routing × 1
- websharper warp × 1
- websharper-interface-generator × 1
- websharper.chartsjs × 1
- websharper.com × 1
- websharper.exe × 1
- websharper.owin × 1
- websharper.ui.next × 1
- websharper.ui.next jquery × 1
- websockets iis × 1
- why-websharper × 1
- windows 7 × 1
- windows 8 × 1
- windows-phone × 1
- winrt × 1
- www.grabbitmedia.com × 1
- xamarin × 1
- xml × 1
- yeoman × 1
- yield × 1
- zafir beta × 1
- zafir websharper4 × 1
- zarovizsga × 1
![]() |
Copyright (c) 2011-2012 IntelliFactory. All rights reserved. Home | Products | Consulting | Trainings | Blogs | Jobs | Contact Us | Terms of Use | Privacy Policy | Cookie Policy |
Built with WebSharper |
Hi,
I was reading in Expert F#, Chapter 13, the example on asynchronous image processing using the Async workflow. Much the same reasoning below can be applied to canonical workflow examples, as in [link:blogs.msdn.com]
The workflow in the Expert F# example reads an image file asynchronously, does some processing, and writes it back to disk asynchronously. Many of these workflows are started in parallel using Async.Parallel. The text then explains that this speeds up the processing time.
However, I would assume that this speed up is _only_ due to the fact that multiple read-process-write process are started in parallell (i.e. the program reads multiple images). The fact that the reading and writing of files occurs asynchronously _within one of the threads_ does nothing to speed things up, as the rest of the computation just waits until the asynchronous read or write returns. These steps might as well execute synchronously, yielding the same overall result. (At most, this asynchronous behavior gives you some more granularity when scheduling threads)
So, it seems that the ReadAsync & friends methods are not very useful in this example - they would be useful if some Future container would be returned, and if the calling thread would not be blocked unti it's result is actually necessary.
What am I missing?
Kurt
PS I'm not debating the overall usefullness of workflows, or Async workflows. It just seems to me that this particular (and often used) example has some serious flaws.